Glutamate Assay Kit

Catalog Number KA1670
100 assays
Version: 04

Intended for research use only
Table of Contents

Introduction .. 3

- Intended Use .. 3
- Background ... 3

General Information .. 4

- Materials Supplied .. 4
- Storage Instruction ... 4
- Materials Required but Not Supplied .. 4
- Precautions for Use ... 4

Assay Protocol .. 5

- Assay Procedure ... 5

Data Analysis .. 6

- Calculation of Results ... 6
Introduction

Intended Use

Application
✓ Direct Assays: glutamate in serum, plasma, tissue extracts and food extract samples.
✓ Drug Discovery/Pharmacology: effects of drugs on glutamate levels

Features
✓ Sensitive and accurate. Detection limit of 50 μM, linearity up to 2.5 mM glutamate in 96-well plate assay.
✓ Convenient. The procedure involves adding a single working reagent, and reading the optical density at time zero and at 30 min at room temperature. No 37°C heater is needed.
✓ High-throughput. Can be readily automated as a high-throughput 96-well plate assay for thousands of samples per day.

Background

Glutamate is an important chemical in general metabolism. It is also a crucial mammalian neurotransmitter that is believed to be involved in a number of neurological and psychiatric disorders such as lateral sclerosis, lathyrism, autism and Alzheimer's disease. Glutamate is also widely used as a flavor enhancer in the food industry.

Simple, direct and automation-ready procedures for measuring glutamate concentration are very desirable. Glutamate Assay Kit is based on glutamate dehydrogenase catalyzed oxidation of glutamate, in which the formed NADH reduces a formazan (MTT) Reagent. The intensity of the product color, measured at 565 nm, is proportionate to the glutamate concentration in the sample.
General Information

Materials Supplied

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>10 mL</td>
</tr>
<tr>
<td>NAD Solution</td>
<td>1 mL</td>
</tr>
<tr>
<td>Enzyme A</td>
<td>120 µL</td>
</tr>
<tr>
<td>Enzyme B</td>
<td>120 µL</td>
</tr>
<tr>
<td>MTT Solution</td>
<td>1.5 mL</td>
</tr>
<tr>
<td>Standard (100 mM Glutamate)</td>
<td>1 mL</td>
</tr>
</tbody>
</table>

Storage Instruction

Store all reagents at -20°C. Shelf life: 6 months after receipt.

Materials Required but Not Supplied

- Pipeting (multi-channel) devices
- Clear-bottom 96-well plates (e.g. Corning Costar)
- Plate reader

Precautions for Use

- Precautions
Reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents.
Assay Protocol

Assay Procedure

1. Calibration Curve

Prepare 600 μL 2.5 mM Glutamate Premix by mixing 15 μL 100 mM Standard and 585 μL distilled water. Dilute standard as follows. Transfer 20 μL standards into wells of a clear bottom 96-well plate.

<table>
<thead>
<tr>
<th>No</th>
<th>Premix + H₂O</th>
<th>Vol (μL)</th>
<th>Galactose (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 μL + 0 μL</td>
<td>100</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>80 μL + 20 μL</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>60 μL + 40 μL</td>
<td>100</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>40 μL + 60 μL</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>5</td>
<td>30 μL + 70 μL</td>
<td>100</td>
<td>0.75</td>
</tr>
<tr>
<td>6</td>
<td>20 μL + 80 μL</td>
<td>100</td>
<td>0.5</td>
</tr>
<tr>
<td>7</td>
<td>10 μL + 90 μL</td>
<td>100</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>0 μL + 100 μL</td>
<td>100</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Samples: add 20 μL sample per well in separate wells. **IMPORTANT:** Serum and tissue extract samples require a sample blank.

2. Reagent Preparation. Spin the Enzyme Mix tube briefly before pipetting. For each well of reaction, prepare Working Reagent by mixing 60 μL Assay Buffer, 1 μL Enzyme A, 1 μL Enzyme B, 5 μL NAD and 14 μL MTT. Fresh reconstitution is recommended. Where a sample blank is required, prepare a Blank Working Reagent by mixing 60 μL Assay Buffer, 1 μL Enzyme B, 5 μL NAD and 14 μL MTT (i.e. No Enzyme A). This assay is based on a kinetic reaction. To ensure identical incubation time, addition of Working Reagent to samples should be quick and mixing should be brief but thorough. Use of a multi-channel pipettor is recommended. Assays can be executed at room temperature or 30°C.

3. Reaction. Add 80 μL Working Reagent (or Blank Working Reagent where appropriate) per reaction well quickly. Tap plate to mix briefly and thoroughly.

4. Read optical density (OD₀) for time “zero” at 565 nm (520-600 nm) and OD₃₀ after a 30-min incubation at room temperature.
Data Analysis

Calculation of Results

Subtract OD₀ from OD₃₀ for the standard and sample wells. Next, subtract the ΔOD_{water} (Std 8) from each ΔOD_{standard} and ΔOD_{sample} to obtain the ΔΔODs. (Where a sample blank was required, subtract the ΔOD_{blank} from ΔOD_{sample} to obtain the ΔΔOD_{sample}.) Plot the ΔΔOD_{standard}’s and use this standard curve to convert the ΔΔOD_{sample} values to sample glutamate concentration.

\[
[\text{Glutamate}] = \frac{\Delta \Delta \text{OD}_{\text{SAMPLE}}}{\text{Slope}} \text{(mM)}
\]

Note: If the sample ΔΔOD values are higher than the ΔΔOD value for the 2.5 mM glutamate standard, dilute sample in distilled water and repeat this assay. Multiply the results by the dilution factor.

Conversions: 1 mM glutamate = 14.6 mg/dL.

✓ This assay is based on an enzyme-catalyzed kinetic reaction. Addition of Working Reagent should be quick and mixing should be brief but thorough. Use of multi-channel pipettor is recommended.

✓ The following substances interfere and should be avoided in sample preparation: EDTA (>0.5 mM), ascorbic acid, SDS (>0.2%), sodium azide, NP-40 (>1%) and Tween-20 (>1%).

![Standard Curve in 96-well plate assay](image-url)