

ER-alpha polyclonal antibody

Catalog # PAB8517 Size 25 ug

Applications

Western Blot

Western blot analysis of extract from ERa cells (lane 1) and vector (lane 2), using ERa polyclonal antibody (Cat # PAB8517).

Specification	
Product Description	Rabbit polyclonal antibody raised against synthetic peptide of Estrogen receptor-alpha.
Immunogen	A synthetic peptide corresponding to alligator Estrogen receptor-alpha.
Host	Rabbit
Reactivity	Crocodile
Form	Liquid
Quality Control Testing	Antibody Reactive Against Synthetic Peptide.
Recommend Usage	Western Blot (1-3 ug/mL) The optimal working dilution should be determined by the end user.
Storage Buffer	In PBS (0.1% proclin, 2.0% Block Ace)
Storage Instruction	Store at -20°C. Aliquot to avoid repeated freezing and thawing.

Applications

Western Blot

Western blot analysis of extract from ERa cells (lane 1) and vector (lane 2), using ERa polyclonal antibody (Cat # PAB8517).

Publication Reference

Molecular cloning of the estrogen and progesterone receptors of the American alligator.

Katsu Y, Bermudez DS, Braun EL, Helbing C, Miyagawa S, Gunderson MP, Kohno S, Bryan TA, Guillette LJ Jr, Iguchi T. General and Comparative Endocrinology 2004 Mar; 136(1):122.