Bilirubin Assay Kit

Catalog Number KA1614
180 assays
Version: 03

Intended for research use only
Table of Contents

Introduction ... 3

 - Intended Use ... 3
 - Background ... 3

General Information ... 4

 - Materials Supplied ... 4
 - Materials Required but Not Supplied ... 4
 - Storage Instruction ... 4
 - Precautions for Use ... 4

Assay Protocol .. 5

 - Assay Procedure .. 5

Data Analysis .. 6

 - Calculation of Results ... 6

Resources ... 7

 - References .. 7
Introduction

Intended Use

Application
✓ Direct Assays: total and direct bilirubin in serum
✓ Pharmacology: effects of drugs on bilirubin metabolism.

Features
✓ Sensitive and accurate. Detection limit 0.16 mg/dL bilirubin in 96-well plate assay.
✓ Simple and high-throughput. The procedure involves addition of a single working reagent and incubation for 10 min. Can be readily automated as a high-throughput assay in 96-well plates for thousands of samples per day

Background

BILIRUBIN is one of the degradation products of hemoglobin formed when red blood cells die. Bilirubin exists in the insoluble unconjugated form (also indirect bilirubin), or soluble glucuronide conjugated form bilirubin (also direct bilirubin). Conjugated bilirubin moves into the bile canaliculi of the liver and then to the gall bladder. When stimulated by eating, bile (including the conjugated bilirubin) is excreted into the small intestine, where bilirubin is converted into urobilinogen. Bilirubin is a key diagnostic indicator. High levels of bilirubin result when too much hemoglobin is broken down or the removal of bilirubin does not function properly. The accumulation of bilirubin in the body causes jaundice.

Simple and automation-ready procedures for quantitative determination of bilirubin find wide applications in research and drug discovery. Bilirubin Assay Kit is designed to measure bilirubin in blood specimen in 96-well or cuvette formats. The improved Jendrassik-Grof method utilizes the reaction of bilirubin with diazotized sulfanilic acid, in which a red colored product is formed. The intensity of the color, measured at 510-550 nm, is an accurate measure of the bilirubin level in the sample. Total bilirubin is assessed using caffeine benzoate to split bilirubin from the unconjugated bilirubin protein complex.
General Information

Materials Supplied

List of component

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent A</td>
<td>30 mL</td>
</tr>
<tr>
<td>Reagent B</td>
<td>10 mL</td>
</tr>
<tr>
<td>Reagent C</td>
<td>30 mL</td>
</tr>
<tr>
<td>Saline</td>
<td>50 mL</td>
</tr>
<tr>
<td>Calibrator (equivalent to 5 mg/dL Bilirubin)</td>
<td>2 mL</td>
</tr>
</tbody>
</table>

Materials Required but Not Supplied

✓ Pipetting devices and accessories.
✓ 96-well plates
✓ Plate reader

Storage Instruction

Store all reagents at 4°C. Shelf life: 12 months after receipt.

Precautions for Use

Reagents are for research use only. Normal precautions for laboratory reagents should be exercised while using the reagents.
Assay Protocol

Assay Procedure

Hemolysis interferes with the assay. Avoid exposure of sample to any light. Samples can be store at -20°C for up to 3 months, 2-8°C for 4 days. If turbidity is observed, centrifuge sample and use clear supernatant for assay.

- Procedure using 96-well plate:
 1. Reagent Preparation: prepare at least 200 μL/well fresh Working Reagent as follows,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Saline</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>50 μL</td>
<td>20 μL</td>
<td>130 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>50 μL</td>
<td>20 μL</td>
<td>-</td>
<td>130 μL</td>
<td>-</td>
</tr>
<tr>
<td>Blank</td>
<td>50 μL</td>
<td>-</td>
<td>-</td>
<td>130 μL</td>
<td>20 μL</td>
</tr>
</tbody>
</table>

“Total Bilirubin” is determined with Working Reagent that contains Reagent C, and “Direct Bilirubin” with Working Reagent that does not contain Reagent C but saline instead.

2. Calibrator: transfer 50 μL H₂O and 50 μL Calibrator into two wells of clear-bottom 96-well plate, add 200 μL H₂O. The volume in each well 250 μL.

 Samples: transfer 50 μL sample into separate wells, add 200 μL respective Working Reagent (i.e. for total bilirubin and/or direct bilirubin) and 200 μL “Blank” Reagent to the sample wells.

3. Incubate 10 min and read OD530 nm (510 to 550 nm).

- Procedure using Cuvet:
 1. Prepare at least 800 μL/well fresh Working Reagent as follows,

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>Saline</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>200 μL</td>
<td>80 μL</td>
<td>520 μL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct</td>
<td>200 μL</td>
<td>80 μL</td>
<td>-</td>
<td>520 μL</td>
<td>-</td>
</tr>
<tr>
<td>Blank</td>
<td>200 μL</td>
<td>-</td>
<td>-</td>
<td>520 μL</td>
<td>80 μL</td>
</tr>
</tbody>
</table>

2. Transfer 200 μL H₂O and 200 μL Calibrator into two cuvets, add 800 μL H₂O. Transfer 200 μL sample into cuvet, add 800 μL Working Reagent.

3. Incubate 10 min and read OD530 nm (510 to 550 nm).
Data Analysis

Calculation of Results

\[
\text{Bilirubin} = \frac{\text{OD}_{\text{SAMPLE}} - \text{OD}_{\text{BLANK}}}{\text{OD}_{\text{CALIBRATOR}} - \text{OD}_{\text{H2O}}} \times 5 \text{ (mg/dL)}
\]

where \(\text{OD}_{\text{SAMPLE}} \), \(\text{OD}_{\text{BLANK}} \), \(\text{OD}_{\text{CALIBRATOR}} \) and \(\text{OD}_{\text{H2O}} \) are the OD530 nm values of the sample, the sample blank, the calibrator and water. 5 (mg/dL) is the equivalent bilirubin concentration of the calibrator.

Standard Curve with Freshly Prepared Bilirubin in 5g/dL Bovine Serum Albumin in 96-well plate assay
Resources

References