Herpes Simplex Virus I IgG ELISA Kit

Catalog Number KA0229

96 assays

Version: 03

Intended for research use only
Table of Contents

Introduction ... 3
 Intended Use ... 3
 Background .. 3
 Principle of the Assay .. 3

General Information ... 4
 Materials Supplied .. 4
 Storage Instruction ... 4
 Precautions for Use ... 4

Assay Protocol ... 6
 Reagent Preparation ... 6
 Sample Preparation .. 6
 Assay Procedure ... 6

Data Analysis ... 8
 Calculation of Results ... 8
 Performance Characteristics .. 9

Resources .. 10
 References ... 10
 Plate Layout .. 11
Introduction

Intended Use

The Herpes Simplex Virus I IgG ELISA Kit is intended for use in evaluating Human serologic status to herpes simplex virus (HSV) type 1 infection, or for evaluating paired sera for the presence of a significant increase in HSV-1 specific IgG.

Background

Herpes Simplex Virus is a common pathogen and its primary infection is usually asymptomatic. There are two immunologically distinct types of HSV: Type 1 and Type 2. HSV-1 is generally associated with oral infection and lesions above the waist, and HSV-2 is associated with genital infections and lesions below the waist. Cases primarily are (1) eczema herpeticum with eczematous skin changes with numerous lesions, (2) gingivo-stomatitis, and (3) herpes sepsis, almost only found in premature newborn infants. The Herpes Simplex Virus I IgG ELISA Kit is an accurate serologic method to detect HSV-1 IgG specific-antibody in serum samples.

Principle of the Assay

Purified HSV-1 antigen is coated on the surface of microwells. Diluted human serum is added to the wells, and the HSV-1 IgG specific-antibody, if present, binds to the antigen. All unbound materials are washed away. HRP-conjugate is added, which binds to the antibody-antigen complex. Excess HRP-conjugate is washed off and a solution of TMB Reagent is added. The enzyme conjugate catalytic reaction is stopped at a specific time. The intensity of the color generated is proportional to the amount of HSV-1 IgG-specific antibody in the sample. The results are read by a microwell reader compared in a parallel manner with calibrator and controls.
General Information

Materials Supplied

List of component

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microtiter Wells: purified HSV-1 antigen coated wells.</td>
<td>96 (8 x 12) wells</td>
</tr>
<tr>
<td>Enzyme Conjugate Reagent (red color)</td>
<td>12 mL</td>
</tr>
<tr>
<td>Sample Diluent (green color)</td>
<td>22 mL</td>
</tr>
<tr>
<td>Negative Control: Range stated on label. Natural cap.</td>
<td>100 µL</td>
</tr>
<tr>
<td>Positive Control: Range stated on label. Red cap.</td>
<td>100 µL</td>
</tr>
<tr>
<td>Cut-off Calibrator: Yellow cap. HSV-1 IgG Index = 1.</td>
<td>100 µL</td>
</tr>
<tr>
<td>Wash Buffer Concentrate (20x)</td>
<td>50 mL</td>
</tr>
<tr>
<td>TMB Reagent (One-Step)</td>
<td>11 mL</td>
</tr>
<tr>
<td>Stop Solution (1N HCl): Natural cap.</td>
<td>11 mL</td>
</tr>
</tbody>
</table>

Storage Instruction

- Store the kit at 2-8°C.
- Keep microwells sealed in a dry bag with desiccants.
- The reagents are stable until expiration of the kit.
- Do not expose test reagents to heat, sun or strong light during storage or usage.

Precautions for Use

- Warning and Precautions
 - Potential biohazardous materials: The calibrator and controls contain human source components which have been tested and found non-reactive for hepatitis B surface antigen as well as HIV antibody with FDA licensed reagents. However, as there is no test method that can offer complete assurance that HIV, hepatitis B virus or other infectious agents are absent, these reagents should be handled at the Biosafety Level 2, as recommended in the Centers for Disease Control/National Institutes of Health manual, “Biosafety in Microbiological and Biomedical Laboratories.” 1984
 - This test kit is designed for investigational use.
 - Do not pipette by mouth. Do not smoke, eat, or drink in the areas in which specimens or kit reagents are handled.
 - The components from different lots should not be mixed.
 - This product contains components preserved with sodium azide. Sodium azide may react with lead and copper plumbing to form explosive metal azide. On disposal, flush with a large volume of water.
✓ Limitation of the procedure

- Reliable and reproducible results will be obtained when the assay procedure is carried out with a complete understanding of the package insert instructions and with adherence to good laboratory practice.
- The wash procedure is critical. Insufficient washing will result in poor precision and falsely elevated absorbance readings.
- Serum samples demonstrating gross lipemia, gross hemolysis, or turbidity should not be used with this test.
- The results obtained from the use of this kit should be used only as an adjunct to other detection procedures and information available to the researcher.
Assay Protocol

Reagent Preparation

- All reagents should be allowed to reach room temperature (18-25°C) before use.
- Dilute 1 volume of Wash Buffer (20x) with 19 volumes of distilled water. For example, dilute 50 mL of Wash Buffer (20x) into distilled water to prepare 1000 mL of Wash Buffer (1x). Wash Buffer is stable for 1 month at 2-8°C. Mix well before use.

Sample Preparation

- Collect blood specimens and separate the serum.
- Specimens may be refrigerated at 2-8°C for up to 7 days or frozen for up to 6 months. Avoid repetitive freezing and thawing of serum sample.

Assay Procedure

1. Place the desired number of coated wells into the holder.
2. Prepare 1:40 dilution of test samples, Negative Control, Positive Control, and Calibrator by adding 5 µL of the sample to 200 µL of Sample Diluent. Mix well.
3. Dispense 100 µL of diluted sera, Calibrator, and Controls into the appropriate wells. For the reagent blank, dispense 100 µL Sample Diluent in 1A well position. Tap the holder to remove air bubbles from the liquid and mix well.
4. Incubate at 37°C for 30 minutes.
5. At the end of incubation period, remove liquid from all wells. Rinse and flick the microtiter wells 5 times with diluted Wash Buffer (1x).
6. Dispense 100 µL of Enzyme Conjugate to each well. Mix gently for 10 seconds.
7. Incubate at 37°C for 30 minutes.
8. Remove Enzyme Conjugate from all wells. Rinse and flick the microtiter wells 5 times with diluted Wash Buffer (1x).
9. Dispense 100 µL of TMB Reagent into each well. Mix gently for 10 seconds.
10. Incubate at 37°C for 15 minutes.
11. Add 100 µL of Stop Solution (1N HCl) to stop reaction.
12. Mix gently for 30 seconds. It is important to make sure that all the blue color changes to yellow color completely. Note: Make sure there are no air bubbles in each well before reading.
13. Read O.D. at 450 nm within 15 minutes with a microwell reader.
Summary

1. **Sample dilution 1:40 (5 µL/200 µL)**

2. **Three incubation at 37°C**

<table>
<thead>
<tr>
<th>Diluted Sample (100 µL)</th>
<th>Enzyme Conjugate (100 µL)</th>
<th>TMB Reagent (One-Step) (100 µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min</td>
<td>30 min</td>
<td>15 min</td>
</tr>
</tbody>
</table>

3. **Stop with 100 µL of acid. Read O.D. at 450 nm.**
Data Analysis

Calculation of Results

✓ Calculate the mean of duplicate calibrator value x_c.
✓ Calculate the mean of duplicate positive control (x_p), negative control (x_n) and samples (x_s).
✓ Calculate the HSV-1 IgG Index of each determination by dividing the mean values of each sample (x_s) by calibrator mean value, x_c.

✓ Example of typical result
Cut-off Calibrator HSV-1 IgG Index = 1.0
1. Cut-off Calibrator O.D. = 0.898, 0.851 $x_c = 0.875$

2. Negative Control O.D. = 0.079, 0.077 $x_n = 0.078$
 HSV-1 IgG Index = $x_n / x_c = 0.078 / 0.875 = 0.09$

3. Positive Control O.D. = 1.539, 1.527 $x_p = 1.533$
 HSV-1 IgG Index = $x_p / x_c = 1.533 / 0.875 = 1.75$

4. Sample O.D. = 2.176, 2.171 $x_s = 2.174$
 HSV-1 IgG Index = $x_s / x_c = 2.174 / 0.875 = 2.48$

Note: The O.D. values are for the purpose of illustration only, and should not be used to calculate unknowns. Each user should obtain his or her own data.

✓ Quality Control
The test run must be considered valid provided the following criteria are met:
1. The O.D. value of the reagent blank against air from a microwell reader should be less than 0.250.
2. If the O.D. value of the Cut-off Calibrator is lower than 0.250, the test is not valid and must be repeated.

✓ Interpretation
- Negative: HSV-1 IgG Index less than 0.90 is seronegative for IgG antibody to HSV-1.
- Equivocal: HSV-1 IgG Index between 0.91-0.99. Sample should be retested.
- Positive: HSV-1 IgG Index of 1.00 or greater is seropositive for IgG antibody to HSV-1.
Performance Characteristics

✓ Specificity and Sensitivity

A total of 105 samples were used to evaluate specificity and sensitivity of the test. The Herpes Simplex Virus I IgG ELISA test results were compared to a commercial ELISA kit results:

<table>
<thead>
<tr>
<th>Herpes Simplex Virus I IgG ELISA</th>
<th>Reference HSV-1 IgG ELISA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td>67(D)</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
</tr>
<tr>
<td>P</td>
<td>2(C)</td>
</tr>
<tr>
<td>Total</td>
<td>69</td>
</tr>
</tbody>
</table>

Sensitivity = A / (A+B) = 34 / 36 = 94.4%
Specificity = D / (C+D) = 67 / 69 = 97.1%
Accuracy = (A+D) / (A+B+C+D) = 101 / 105 = 96.2%

✓ Precision

• Intra-Assay Precision

Within-run precision was determined by replicate determinations of four different serum samples in one assay. Within-assay variability is shown below:

<table>
<thead>
<tr>
<th>Serum Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Reps.</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Mean A_{450}</td>
<td>2.279</td>
<td>1.119</td>
<td>0.652</td>
<td>0.265</td>
</tr>
<tr>
<td>S.D. (A_{450})</td>
<td>0.083</td>
<td>0.041</td>
<td>0.027</td>
<td>0.022</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>3.6</td>
<td>3.6</td>
<td>4.2</td>
<td>8.5</td>
</tr>
</tbody>
</table>

• Inter-Assay Precision

Between-run precision was determined by replicate determinations of four different serum samples over a series of individually calibrated assays. Between-assay variability is shown below:

<table>
<thead>
<tr>
<th>Serum Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#Reps.</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Mean A_{450}</td>
<td>2.097</td>
<td>0.976</td>
<td>0.556</td>
<td>0.248</td>
</tr>
<tr>
<td>S.D. (A_{450})</td>
<td>0.085</td>
<td>0.036</td>
<td>0.025</td>
<td>0.010</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>4.1</td>
<td>3.7</td>
<td>4.5</td>
<td>4.0</td>
</tr>
</tbody>
</table>
References

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>