The **c-Src Kinase Assay/Inhibitor Screening Kit** is designed to measure the activities of recombinant catalytic domain of c-Src for the rapid and sensitive evaluation of inhibitors or activators. The phosphotyrosine specific monoclonal antibody used in this assay kit has been demonstrated to recognize the phosphotyrosine residue in the recombinant catalytic domain of c-Src, which is captured and activated by recombinant “Tyrosine kinase-binding module-1” that has been immobilized on microtiter plate.

Applications for this kit include:
1) Screening inhibitors or activators of recombinant catalytic domain of c-Src.
2) Detecting the effects of pharmacological agents on recombinant catalytic domain of c-Src.

This assay kit is for research use only and not for use in diagnostic or therapeutic procedures.

Storage
- Upon receipt store the ATP at -20°C.
- Upon receipt store all other components at 4°C; Do not expose reagents to excessive light
Introduction

The Src family of non-receptor protein tyrosine kinases plays critical roles in a variety of cellular signal transduction pathways, regulating such diverse processes as cell division, motility, adhesion, angiogenesis, and survival (1-3). Constitutively activated variants of Src family kinases, including the viral oncoproteins v-Src and v-Yes, are capable of inducing malignant transformation of a variety of cell types (4). Src family kinases, most notably although not exclusively Src, are frequently overexpressed and/or aberrantly activated in a variety of epithelial and non-epithelial cancers (5). Activation is very common in colorectal and breast cancers, and somewhat less frequent in melanomas, ovarian cancer, gastric cancer, head and neck cancers, pancreatic cancer, lung cancer, brain cancers, and blood cancers (5). Further, the extent of increased Src family activity often correlates with malignant potential and patient survival (5). Activation of Src family kinases in human cancers may occur through a variety of mechanisms and is frequently a critical event in tumor progression (6). Exactly how Src family kinases contribute to individual tumors remains to be defined completely, however they appear to be important for multiple aspects of tumor progression, including proliferation, disruption of cell/cell contacts, migration, invasiveness, resistance to apoptosis, and angiogenesis (1, 5).

Elevated Src tyrosine kinase activity has been found in colon cancers, particularly in those metastatic to the liver. Studies of the mechanism of Src regulation suggested that Src kinase activity is downregulated by phosphorylation of a critical C-terminal tyrosine (Tyr530 in human Src) and have implied the existence of activating mutations in this C-terminal regulatory region. Irby et al. reported the identification of a truncating mutation in Src at codon 531 in 12% of cases of advanced human colon cancer tested and demonstrated that the mutation is activating, transforming, tumorigenic, and metastasis-promoting (7). The results provided, for the first time, genetic evidence that activating Src mutations may have a role in the malignant progression of human colon cancer.

Measurement of c-Src Kinase activity

The protocol generally regarded as most sensitive for the quantitative measurement of c-Src kinase activity involves incubation of the c-Src kinase sample with substrate, either a natural or synthetic polypeptide (such as poly[Glu,Tyr]4:1), in the presence of Mg$^{2+}$, Mn$^{2+}$ and 32P-labeled ATP. The reaction is terminated by "spotting" a sample onto a filter paper disc, followed by immersion in acid to precipitate the radiolabeled product. The filter papers are then washed extensively to remove unincorporated radiolabel and the radioactivity is counted. While sensitive, this method is labor-intensive, generates hazardous radioactive
waste, and depends on a radioisotope of short half-life. It is particularly unsuitable when kinase assays are only performed on an infrequent basis. The **Src Kinase Assay/Inhibitor Screening Kit** uses a horseradish peroxidase coupled anti-phosphotyrosine monoclonal antibody as a reporter molecule in a 96-wells ELISA format. This assay provides a non-isotopic, sensitive and specific method to detect kinase activity of recombinant c-Src catalytic domain.

Principle of the Assay

The **c-Src Kinase Assay/Inhibitor Screening Kit** is a single-site, non-quantitative immunoassay for kinase activity of recombinant catalytic domain of c-Src. Plates are pre-coated with a newly designed “Tyrosine kinase-binding module-1”, which can easily bind recombinant catalytic domain of c-Src, subsequently activate c-Src kinase activity on a microtiter plate. The detector antibody is PY-39, an antibody that specifically detects the phosphotyrosine residue on recombinant catalytic domain of c-Src itself, which means that this kit measures the intensity of autophosphorylation of c-Src catalytic domain.

The **c-Src Kinase Assay/Inhibitor Screening Kit** might be used to follow the kinetics of recombinant catalytic domain of c-Src as well as screening c-Src inhibitor or activator. To perform the test, the recombinant catalytic domain of c-Src is diluted in Kinase Buffer, pipetted into the wells and allowed to autophosphorylate on the wells, which have been coated with “Tyrosine kinase-binding module-1” in the presence of Mg$^{2+}$, Mn$^{2+}$ and ATP. The amount of phosphorylated the recombinant catalytic domain of Src is measured by binding it with a horseradish peroxidase conjugate of PY-39, an anti-phosphotyrosine monoclonal antibody, which then catalyzes the conversion of the chromogenic substrate tetra-methylbenzidine (TMB) from a colorless solution to a blue solution (or yellow after the addition of stopping reagent). The color is quantified by spectrophotometry and reflects the relative amount of c-Src kinase activity in the sample. For kinetic analysis, the recombinant catalytic domain of c-Src is added to the wells in a similar fashion and at varying times the reaction is stopped by the addition of a chelator, sodium ethylenediaminetetraacetate (EDTA) and the amount of phosphorylated substrate determined as before.

The **c-Src Kinase Assay/Inhibitor Screening Kit** is designed to determine non-isotopic kinetic analysis of the c-Src catalytic domain kinase activity. Careful attention to operation and the assay protocol will provide the investigator with a reliable tool for the evaluation of inhibitor or activator of c-Src kinase.
Summary of Procedure

Add 100 µL of reaction mixture to the wells
 ↓ Incubate for 30 min at 30 °C
Wash the wells

Add 100 µL of HRP conjugated anti-phosphotyrosine antibody
 ↓ Incubate for 60 min at room temp.
Wash the wells

Add 100 µL of Substrate Reagent

Add 100 µL of Stop Solution

Measure absorbance at 450 nm
Materials Provided

All samples and standards should be assayed in duplicate. The following components are supplied and are sufficient for the one 96-wells microtiter plate kit.

Microplate: One microplate supplied ready to use, with 96 wells (12 strips of 8-wells) in a foil, zip-lock bag with a desiccant pack. Wells are coated with recombinant “Tyrosine kinase-binding module-1”.

10X Wash Buffer: One 100 mL bottle of 10X buffer containing 2%Tween®-20.

Kinase Buffer: One 20 mL bottle of 1X buffer used for Kinase Reaction Buffer and sample dilution.

20X ATP: Lyophilized ATP Na₂ salt. Reconstitute contents of vial with 2 mL of H₂O. Mix gently until dissolved. Final concentration of ATP should be 1 mM ATP. The ATP solution can be stored in small aliquots (e.g. 100 µL) at -20°C. The 1 mM ATP stock solution must be diluted to 50 µM in **Kinase Reaction Buffer** at the time of the assay.

HRP conjugated Detection Antibody: One bottle containing 12 mL of HRP (horseradish peroxidase) conjugated anti-phosphotyrosine monoclonal antibody (PY-39).

Substrate Reagent: One bottle containing 12 mL of the chromogenic substrate, tetra-methylbenzidine (TMB). Ready to use.

Stop Solution: One bottle supplied ready to use, containing 12 mL of 1.25 N H₂SO₄. Ready to use.
Materials Required but not Provided

- **c-Src Positive Control**: One vial contains 100 units recombinant catalytic domain of c-Src. The Positive Control should be added to the first well at 1 unit/well. For instance, in the case of 100 units/100 µL c-Src Positive Control, diluted Positive Control 1:10 with Kinase Buffer, use 10 µL for 1 assay. The Positive Control is separately delivered with a dry ice from other kit components. The Positive Control should be stored in aliquots at **below -70°C**. Avoid repeated freeze and thaw.

- **10X Staurosporine (100 µM)**: Staurosporine is available from Sigma, Cat#. S-4400. 10 mM stock solution (DMSO) diluted 1:100 in Kinase Buffer.

- **10X 2,5-MeC (methyl 2,5-dihydroxycinnamate)**: 100 µM 2,5-MeC (Kyowa Medix, Japan Cat#: OP11: make 5 mM DMSO solution and diluted 1:50 in water)

- **10X Quercetin dihydrate**: 500 µM Quercetin dihydrate (Sigma Cat# Q-0125: make 10 mM DMSO solution and diluted 1:20 in water)

- **Pipettors**: 2-20 µL, 20-200 µL and 200-1000 µL precision pipettors with disposable tips.

- **Precision repeating pipettor**.

- **Wash bottle or multichannel dispenser** for plate washing.

- **Microcentrifuge and tubes** for sample preparation.

- **Vortex mixer**.

- **Plate reader** capable of measuring absorbance in 96-well plates at dual wavelengths of 450 nm/540 nm. Dual wavelengths of 450/550 or 450/595 nm can also be used. The plate can also be read at a single wavelength of 450 nm, which will give a somewhat higher reading.

- **Reagent reservoirs**.

- **Deionized water of the highest quality**.
Precautions and Recommendations

- Store the ATP at -20°C in aliquots. Store all other components at 4°C. Do not expose reagents to excessive light. Avoid freeze/thaw cycles.

- Allow all the components to come to room temperature before use.

- Do not use kit components beyond the indicated kit expiration date.

- Use only the microtiter wells provided with the kit.

- Rinse all detergent residue from glassware.

- Use deionized water of the highest quality.

- Do not mix reagents from different kits.

- The buffers and reagents used in this kit contain Kathon-CG as preservatives. Care should be taken to avoid direct contact with these reagents.

- Do not mouth pipet or ingest any of the reagents.

- Do not smoke, eat, or drink when performing the assay or in areas where samples or reagents are handled.

- Human samples may be contaminated with infectious agents. Do not ingest, expose to open wounds or breathe aerosols. Wear protective gloves and dispose of biological samples properly.

- Dispose of tetra-methylbenzidine (TMB) containing solutions in compliance with local regulations.

- **CAUTION:** Sulfuric Acid is a strong acid. Wear disposable gloves and eye protection when handling Stop Solution.
The **c-Src Kinase Assay/Inhibitor Screening Kit** is provided with removable strips of wells so the assay can be carried out on separate occasions using only the number of strips required for the particular determination. **Due to technical reason, this kit is adjusted to measure kinase activity of the recombinant catalytic domain of c-Src (c-Src Positive Control), which should be used in all assays.** Disposable pipette tips and reagent troughs should be used for all liquid transfers to avoid cross-contamination of reagents or samples.

Standard Assay

1. Remove the appropriate number of microtiter wells from the foil pouch and place them into the well holder. Return any unused wells to the foil pouch, refold, seal with tape and store at 4 °C.

2. Prepare a working solution of **Wash Buffer** by adding 100 mL of the 10X **Wash Buffer** (provided) to 900 mL of deionized water. Mix well.

3. Prepare **Kinase Reaction Buffer** by adding the ATP to a final concentration of 50 µM (add 50 µL of 20X ATP to 950 µL of **Kinase Buffer** (provided). You will need 90 µL of Kinase Reaction Buffer per assay well. Mix well. Discard any unused Kinase Reaction Buffer after use.

4. Prepare the Kinase Assay Buffer containing test chemicals and tyrosine kinase inhibitor. All assays should be done in duplicate.

5. Add 10 µL of 0.1 unit/µL c-Src Positive Control or serial dilution of c-Src Positive Control to the wells of the assay plate on ice.

6. Begin the kinase reaction by addition of 90 µL **Kinase Reaction buffer** per well, mix well, cover with plate sealer, and incubate at 30°C for 60 minutes.

7. Wash wells five times with Wash Buffer making sure each well is filled completely. Remove residual Wash Buffer by gentle tapping or aspiration.

8. Pipette 100 µL **HRP conjugated Detection Antibody PY-39** into each well, cover with a plate sealer and incubate at room temperature for 60 minutes. Discard any unused conjugate.
9. Wash wells five times with Wash Buffer making sure each well is filled completely. Remove residual Wash Buffer by gentle tapping or aspiration.

10. Add 100 µL of Substrate Reagent to each well and incubate at room temperature for 5–15 minutes.

11. Add 100 µL of Stop Solution to each well in the same order as the previously added Substrate Reagent.

12. Measure absorbance in each well using a spectrophotometric plate reader at dual wavelengths of 450/540 nm. Dual wavelengths of 450/550 or 450/595 nm can also be used. Read the plate at 450 nm if only a single wavelength can be used. Wells must be read within 30 minutes of adding the Stop Solution.

Kinetic Assay

1. After the component comes to room temperature, remove the microtiter plate from the foil pouch.

2. Prepare a working solution of Wash Buffer by adding 100 mL of the 10X Wash Buffer (provided) to 900 mL of deionized water. Mix well.

3. Prepare Kinase Reaction Buffer by adding the ATP to a final concentration of 50 µM (add 50 µL of 20X ATP to 950 µL of Kinase Buffer (provided). You will need 90 µL of Kinase Reaction Buffer per assay well. Mix well. Discard any unused Kinase Reaction Buffer after use.

4. Prepare the Kinase Assay Buffer containing test chemicals and tyrosine kinase inhibitor. All assays should be done in duplicate.

5. Add 10 µL of 0.1 unit/µL c-Src Positive Control or serial dilution of c-Src Positive Control to the wells of the assay plate on ice.

6. Begin kinase reaction by addition of 90 µL Kinase Reaction Buffer in duplicate per well in timed intervals (suggested interval is 5 minutes but should be individually determined for each system). After the final addition, incubate at 30°C for 10 minutes.
7. Stop the reaction by flicking out the contents. (Alternatively, the reaction may be terminated by the addition of 150 μL 0.1 M Na EDTA, pH 8.0 to each well).

8. Wash wells five times with Wash Buffer making sure each well is filled completely. Remove residual Wash Buffer by gentle tapping or aspiration.

9. Pipette **100 μL** of **HRP conjugated Detection Antibody PY-39** into each well, cover with a plate sealer and incubate at room temperature for 60 minutes. Discard any unused conjugate after use.

10. Wash wells five times with Wash Buffer making sure each well is filled completely. Remove residual Wash Buffer by gentle tapping or aspiration.

11. Add **100 μL** of **Substrate Reagent** to each well and incubate at room temperature for 10-15 minutes.

12. Add **100 μL** of **Stop Solution** to each well in the same order as the previously added Substrate Reagent. Mix thoroughly.

13. Measure absorbance in each well using a spectrophotometric 96-wells plate reader at dual wavelengths of 450/540 nm. Dual wavelengths of 450/550 or 450/595 nm can also be used. Read the plate at 450 nm if only a single wavelength can be used. Wells must be read within 30 minutes of adding the Stop Solution.
Recommendations

Special considerations when screening activators and inhibitors

In order to estimate the inhibitory effect on c-Src activity in the test chemicals correctly, it is necessary to conduct the control experiment of “Solvent control” at least once for every experiment and “Inhibitor control” at least once for the first experiment, in addition to “Test sample”, as indicated in the following table. When test chemicals cause an inhibitory effect on c-Src activity, the level of A450 is weakened as compared with “Solvent control”. The high level of A450 is not observed in “Inhibitor control” (usually A450<0.4).

<table>
<thead>
<tr>
<th>Assay reagents</th>
<th>Test sample</th>
<th>Solvent control</th>
<th>Inhibitor control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinase Reaction Buffer</td>
<td>80 µL</td>
<td>80 µL</td>
<td>80 µL</td>
</tr>
<tr>
<td>10X Inhibitor or equivalent</td>
<td>10 µL</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Solvent for Inhibitor</td>
<td>-</td>
<td>10 µL</td>
<td>-</td>
</tr>
<tr>
<td>10X Quercetin dihydrate*</td>
<td>-</td>
<td>-</td>
<td>10 µL</td>
</tr>
<tr>
<td>c-Src Positive Control (0.1 unit/µL)</td>
<td>10 µL</td>
<td>10 µL</td>
<td>10 µL</td>
</tr>
</tbody>
</table>

* 10X Quercetin dihydrate See section “Materials Required but not Provided”

1. Following the above table, add the Reagents to each well of the microplate. Finally, initiate reaction by adding 10 µL of “Diluted c-Src Positive Control” to each well and mixing thoroughly at room temperature. Cover with plate sealer. Incubate at 30°C for 30 minutes.

Evaluation of Results

1. Average the absorbance values for the c-Src sample duplicates (Positive Control) and all experimental sample duplicate values (when applicable). When the c-Src positive control (1 unit/assay) is included as an internal control for the phosphorylation reaction, the absorbance value should be greater than 1.0 with a background less than 0.15.

2. For kinetic analysis, on graph paper, plot the mean absorbance values for each of the time points on the Y-axis versus the time of each reaction (minutes) on the X-axis.
Assay Characteristics

The **c-Src Kinase Assay/Inhibitor Screening Kit** has been shown to detect the kinase activity of recombinant catalytic domain of c-Src. The assay shows good linearity of sample response.

Troubleshooting

A. The c-Src positive control should be run in duplicate, using the protocol described in the **Detailed Protocol**. Incubation times or temperatures significantly different from those specified may give erroneous results.

B. The reaction curve is nearly a straight line if the kinetics of the assay is of the first order. Variations in the protocol can lead to non-linearity of the curve, as can assay kinetics that are other than first order. For a non-linear curve, point to point or quadratic curve fit methods should be used.

C. Poor duplicates, accompanied by elevated values for wells containing no sample, indicate insufficient washing. If all instructions in the **Detailed Protocol** were followed accurately, such results indicate a need for washer maintenance.

D. Overall low signal may indicate that desiccation of the plate has occurred between the final wash and addition of Substrate Reagent. **Do not allow the plate to dry out.** Add Substrate Reagent immediately after wash.

Reagent Stability

All of the reagents included in the **c-Src Kinase Assay/Inhibitor Screening Kit** have been tested for stability. Reagents should not be used beyond the stated expiration date. Upon receipt, kit reagents should be stored at 4°C, except the c-Src Positive Control must be stored at below -70°C. Coated assay plates should be stored in the original foil bag sealed by the zip lock and containing a desiccant pack.

For research use only, not for use in diagnostic or therapeutic procedures.
Example of Test Results

Fig.1 Dose dependency of recombinant c-Src catalytic domain enzyme reaction.

Fig.2 Time course of recombinant c-Src catalytic domain enzyme reaction.
Fig. 3-1 Dose dependency of ATP (of recombinant c-Src catalytic domain)

\[y = 39.625x + 27.098 \]

\[R^2 = 0.9999 \]

Fig. 3-2 Km for ATP (of recombinant c-Src catalytic domain)
Fig. 4-1 Effect of broad-spectrum kinase inhibitor Staurosporine on activity of recombinant c-Src catalytic domain enzyme reaction.

Fig. 4-2 Effect of broad-spectrum kinase inhibitor Staurosporine on activity of recombinant c-Src catalytic domain enzyme reaction using radioisotope gamma-^{32}P-ATP.
References

