


H3R17me2 polyclonal antibody

Catalog # PAB14059 Size 100 uL

Applications

3,50 3,00 2,50 2,50 2,50 2,50 1,50 1,50 0,50 0,00 10 1000 10000 100000 1000000 Antibody dilution

ChIP

ChIP assays were performed using human osteosarcoma (U-2 OS) cells, the polyclonal antibody against H3R17me2(asym) (Cat # PAB14059) and optimized PCR primer sets for qPCR.

Figure A: qPCR performed with primers for the GAPDH promoter and for exon 2 of the myoglobin gene.

Figure B: qPCR performed with primers for the promoter of the active ALDOA gene and for the coding region of the inactive MYOD gene.

Enzyme-linked Immunoabsorbent Assay

ELISA was performed using a serial dilution of H3R17me2 polyclonal antibody (Cat # PAB14059).

The antigen used was a peptide containing the histone modification of interest. By plotting the absorbance against the antibody dilution, the titer of the crude serum was estimated to be 1 : 40,000.

\sim		4.5
Sno	CITIC	ation
		auvn

Product Description Rabbit polyclonal antibody raised against synthetic peptide of H3R17me2.

Immunogen

A synthetic peptide (conjugated with KLH) corresponding to region of histone H3 containing the asy mmetrically dimethylated arginine 17 (H3R17me2 (asym)).

Product Information

Host	Rabbit
Reactivity	Human
Form	Liquid
Recommend Usage	ELISA (1:1000-1:3000) Dot Blot (1:20000) Western Blot (1:250) ChIP (10-15 ul/ChIP) The optimal working dilution should be determined by the end user.
Storage Buffer	In serum (0.05% sodium azide)
Storage Instruction	Store at -20°C. For long term storage store at -80°C. Aliquot to avoid repeated freezing and thawing.
Note	This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which shoul d be handled by trained staff only.

Applications

ChIP

ChIP assays were performed using human osteosarcoma (U-2 OS) cells, the polyclonal antibody against H3R17me2(asym) (Cat # PAB14059) and optimized PCR primer sets for qPCR.

Figure A: qPCR performed with primers for the GAPDH promoter and for exon 2 of the myoglobin gene.

Figure B: qPCR performed with primers for the promoter of the active ALDOA gene and for the coding region of the inactive MYOD gene.

- Western Blot
- Enzyme-linked Immunoabsorbent Assay

ELISA was performed using a serial dilution of H3R17me2 polyclonal antibody (Cat # PAB14059).

The antigen used was a peptide containing the histone modification of interest.

By plotting the absorbance against the antibody dilution, the titer of the crude serum was estimated to be 1:40,000.

Dot Blot

Publication Reference

<u>Dynamic regulation of histone lysine methylation by demethylases.</u>

Shi Y, Whetstine JR.

Molecular Cell 2007 Jan; 25(1):1.

• <u>Stimulation of the Ras-MAPK pathway leads to independent phosphorylation of histone H3 on serine 10 and 28.</u>

Dunn KL, Davie JR.

Oncogene 2005 May; 24(21):3492.

• Intra- and inter-nucleosomal protein-DNA interactions of the core histone tail domains in a model system.

Zheng C, Hayes JJ.

The Journal of Biological Chemistry 2003 Apr; 278(26):24217.