

RAD9 (phospho S1129) polyclonal antibody

Catalog # PAB11309 Size 100 ug

Applications

Western Blot (Recombinant protein)

Immunoblotting of RAD9 (phospho S1129) polyclonal antibody (Cat # PAB11309) was used at a 1 : 200 dilution incubated 8 h at room temperature to detect RAD9 by Western blot.

Lanes were loaded with 50 ng each of recombinant GST fusion protein containing S. cerevisiae RAD9 (aa 991-1309 \sim 60 KDa) on a 4-20% Criterion gel for SDS-PAGE as follows :

Lane 1 - non-phosphorylated wild type yeast RAD9, Lane 2 - in vitro phosphorylated wild type yeast RAD9, Lane 3 - non-phosphorylated S1129A/S1260A double mutant RAD9, Lane 4 - in vitro phosphorylated S1129A/S1260A double mutant.

Phosphorylation of RAD9 was by treatment with ATP and RAD53 kinase. Detection occurred using a 1:5,000 dilution of IRDye™800 conjugated Donkey anti-Rabbit IgG for 1h at room temperature. LICOR's Odyssey® Infrared Imaging System was used to scan and process the image.

Specification	
Product Description	Rabbit polyclonal antibody raised against synthetic phosphopeptide of RAD9.
lmmunogen	Synthetic phosphopeptide (conjugated with KLH) corresponding to residues surrounding S1129 of S accharomyces cerevisiae RAD9.
Host	Rabbit
Reactivity	Yeast
Specificity	This phospho specific polyclonal antibody reacts with phosphorylated pS1260 of yeast Rad9. Reactivity with non-phosphorylated yeast Rad9 is minimal by ELISA and immunoblotting. No reactivity is expected against the human or mouse analogs of RAD9. Cross reactivity may occur with auto-phosphorylated Rad53 kinase.

Product Information

Form	Liquid
Quality Control Testing	Antibody Reactive Against Synthetic Peptide.
Recommend Usage	Sandwich ELISA (1:5000) The optimal working dilution should be determined by the end user.
Storage Buffer	In 20 mM KH ₂ PO ₄ , 150 mM NaCl, pH 7.2 (0.01% sodium azide)
Storage Instruction	Store at 4°C. For long term storage store at -20°C. Aliquot to avoid repeated freezing and thawing.
Note	This product contains sodium azide: a POISONOUS AND HAZARDOUS SUBSTANCE which shoul d be handled by trained staff only.

Applications

Western Blot (Recombinant protein)

Immunoblotting of RAD9 (phospho S1129) polyclonal antibody (Cat # PAB11309) was used at a 1 : 200 dilution incubated 8 h at room temperature to detect RAD9 by Western blot.

Lanes were loaded with 50 ng each of recombinant GST fusion protein containing S. cerevisiae RAD9 (aa 991-1309 ~60 KDa) on a 4-20% Criterion gel for SDS-PAGE as follows :

Lane 1 - non-phosphorylated wild type yeast RAD9, Lane 2 - in vitro phosphorylated wild type yeast RAD9, Lane 3 - non-phosphorylated S1129A/S1260A double mutant RAD9, Lane 4 - in vitro phosphorylated S1129A/S1260A double mutant. Phosphorylation of RAD9 was by treatment with ATP and RAD53 kinase.

Detection occurred using a 1:5,000 dilution of IRDye™800 conjugated Donkey anti-Rabbit IgG for 1h at room temperature. LICOR's Odyssey® Infrared Imaging System was used to scan and process the image.

Enzyme-linked Immunoabsorbent Assay

Gene Info — RAD9		
Entrez GenelD	<u>851803</u>	
Protein Accession#	Locus:11q13.1-q13.2;OMIM603761;GDB5592334;SwissProtQ99638	
Gene Name	RAD9	
Gene Alias	-	
Gene Description	DNA damage-dependent checkpoint protein, required for cell-cycle arrest in G1/S, intra-S, and G 2/M; transmits checkpoint signal by activating Rad53p and Chk1p; hyperphosphorylated by Mec1 p and Tel1p; potential Cdc28p substrate	
Gene Ontology	<u>Hyperlink</u>	

Product Information

Gene Summary	-
Other Designations	Rad9p

Publication Reference

Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint.

 $Schwartz\ MF,\ Duong\ JK,\ Sun\ Z,\ Morrow\ JS,\ Pradhan\ D,\ Stern\ DF.$

Molecular Cell 2002 May; 9(5):1055.

 Schizosaccharomyces pombe Rad9 contains a BH3-like region and interacts with the anti-apoptotic protein Bcl-2.

Komatsu K, Hopkins KM, Lieberman HB, Wang H.

FEBS Letters 2000 Sep; 481(2):122.

Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint.

Sun Z, Hsiao J, Fay DS, Stern DF.

Science 1998 Jul; 281(5374):272.