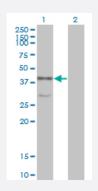

MAPK13 monoclonal antibody (M01), clone 2C10-1C7

Catalog # H00005603-M01 Size 100 ug

Applications

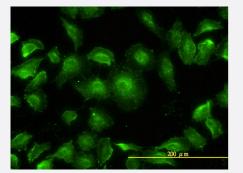

Western Blot (Cell lysate)

MAPK13 monoclonal antibody (M01), clone 2C10-1C7. Western Blot analysis of MAPK13 expression in HepG2 (Cat # L019V1).

175 - 83 -	
62 -	
47.5-	State of the local division of the local div
32.5-	-
25 -	
16.5 -	
6.5-	

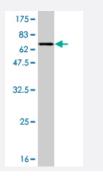
Western Blot (Cell lysate)

MAPK13 monoclonal antibody (M01), clone 2C10-1C7 Western Blot analysis of MAPK13 expression in A-431 (Cat # L015V1).



Western Blot (Transfected lysate)

Western Blot analysis of MAPK13 expression in transfected 293T cell line by MAPK13 monoclonal antibody (M01), clone 2C10-1C7.


Lane 1: MAPK13 transfected lysate(42.1 KDa). Lane 2: Non-transfected lysate.

Immunofluorescence

Immunofluorescence of monoclonal antibody to MAPK13 on HeLa cell. [antibody concentration 15 ug/ml]

Western Blot detection against Immunogen (65.78 KDa).

Specification	
Product Description	Mouse monoclonal antibody raised against a full length recombinant MAPK13.
Immunogen	MAPK13 (AAH00433.1, 1 a.a. ~ 365 a.a) full-length recombinant protein with GST tag. MW of the G ST tag alone is 26 KDa.
Sequence	MSLIRKKGFYKQDVNKTAWELPKTYVSPTHVGSGAYGSVCSAIDKRSGEKVAIKKLSRPFQSEIFA KRAYRELLLLKHMQHENVIGLLDVFTPASSLRNFYDFYLVMPFMQTDLQKIMGMEFSEEKIQYLVY QMLKGLKYIHSAGVVHRDLKPGNLAVNEDCELKILDFGLARHADAEMTGYVVTRWYRAPEVILSW MHYNQTVDIWSVGCIMAEMLTGKTLFKGKDYLDQLTQILKVTGVPGTEFVQKLNDKAAKSYIQSLP QTPRKDFTQLFPRASPQAADLLEKMLELDVDKRLTAAQALTHPFFEPFRDPEEETEAQQPFDDS LEHEKLTVDEWKQHIYKEIVNFSPIARKDSRRRSGMKL
Host	Mouse
Reactivity	Human
lsotype	lgG1 Kappa
Quality Control Testing	Antibody Reactive Against Recombinant Protein. Western Blot detection against Immunogen (65.78 KDa).
Storage Buffer	In 1x PBS, pH 7.4
Storage Instruction	Store at -20°C or lower. Aliquot to avoid repeated freezing and thawing.

Product Information

Applications

• Western Blot (Cell lysate)

MAPK13 monoclonal antibody (M01), clone 2C10-1C7. Western Blot analysis of MAPK13 expression in HepG2 (Cat # L019V1).

Protocol Download

• Western Blot (Cell lysate)

MAPK13 monoclonal antibody (M01), clone 2C10-1C7 Western Blot analysis of MAPK13 expression in A-431 (Cat # L015V1).

Protocol Download

Western Blot (Transfected lysate)

Western Blot analysis of MAPK13 expression in transfected 293T cell line by MAPK13 monoclonal antibody (M01), clone 2C10-1C7.

Lane 1: MAPK13 transfected lysate(42.1 KDa). Lane 2: Non-transfected lysate.

Protocol Download

• Western Blot (Recombinant protein)

Protocol Download

- ELISA
- Immunofluorescence

Immunofluorescence of monoclonal antibody to MAPK13 on HeLa cell. [antibody concentration 15 ug/ml]

Gene Info — MAPK13	
Entrez GenelD	5603
GeneBank Accession#	<u>BC000433</u>
Protein Accession#	AAH00433.1
Gene Name	MAPK13
Gene Alias	MGC99536, PRKM13, SAPK4, p38delta

😵 Abnova

Product Information

Gene Description	mitogen-activated protein kinase 13
Omim ID	<u>602899</u>
Gene Ontology	Hyperlink
Gene Summary	The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular pro cesses such as proliferation, differentiation, transcription regulation and development. This kinase is closely related to p38 MAP kinase, both of which can be activated by proinflammatory cytokine s and cellular stress. MAP kinase kinases 3, and 6 can phosphorylate and activate this kinase. Tr anscription factor ATF2, and microtubule dynamics regulator stathmin have been shown to be the substrates of this kinase. [provided by RefSeq
Other Designations	OTTHUMP00000016282 mitogen-activated protein kinase p38 delta stress-activated protein kin ase 4

Pathway

- <u>Amyotrophic lateral sclerosis (ALS)</u>
- Epithelial cell signaling in Helicobacter pylori infection
- Fc epsilon RI signaling pathway
- <u>GnRH signaling pathway</u>
- Leukocyte transendothelial migration
- MAPK signaling pathway
- Neurotrophin signaling pathway
- <u>T cell receptor signaling pathway</u>
- Toll-like receptor signaling pathway
- VEGF signaling pathway

Disease

- <u>Cardiovascular Diseases</u>
- Diabetes Mellitus
- Edema

Product Information

HIV Infections