

CRYGD 293T Cell Transient Overexpression Lysate(Denatured)

Catalog # H00001421-T01 Size 100 uL

Applications

SDS-PAGE Gel

CRYGD transfected lysate.

Western Blot

Lane 1: CRYGD transfected lysate (19.25 KDa) Lane 2: Non-transfected lysate.

Specification	
Transfected Cell Line	293T
Plasmid	pCMV-CRYGD full-length
Host	Human
Theoretical MW (kDa)	19.25
Interspecies Antigen Sequence	Mouse (85); Rat (86)

Product Information

Quality Control Testing	Transient overexpression cell lysate was tested with Anti-CRYGD antibody (H00001421-B01) by We		
	stern Blots.		
	SDS-PAGE Gel		
	CRYGD transfected lysate.		
	Western Blot		
	Lane 1: CRYGD transfected lysate (19.25 KDa)		
	Lane 2: Non-transfected lysate.		
Storage Buffer	1X Sample Buffer (50 mM Tris-HCl, 2% SDS, 10% glycerol, 300 mM 2-mercaptoethanol, 0.01% Bro mophenol blue)		
Storage Instruction	Store at -80°C. Aliquot to avoid repeated freezing and thawing.		

Applications

• Western Blot

Gene Info — CRYGD

Entrez GenelD	<u>1421</u>
GeneBank Accession#	<u>NM_006891.2</u>
Protein Accession#	<u>NP_008822.2</u>
Gene Name	CRYGD
Gene Alias	CACA, CCA3, CCP, CRYG4, cry-g-D
Gene Description	crystallin, gamma D
Omim ID	<u>115700 123690 601286 608983</u>
Gene Ontology	Hyperlink

Product Information

Gene Summary

Crystallins are separated into two classes: taxon-specific, or enzyme, and ubiquitous. The latter cl ass constitutes the major proteins of vertebrate eye lens and maintains the transparency and refra ctive index of the lens. Since lens central fiber cells lose their nuclei during development, these cry stallins are made and then retained throughout life, making them extremely stable proteins. Mam malian lens crystallins are divided into alpha, beta, and gamma families; beta and gamma crystall ins are also considered as a superfamily. Alpha and beta families are further divided into acidic a nd basic groups. Seven protein regions exist in crystallins: four homologous motifs, a connecting peptide, and N- and C-terminal extensions. Gamma-crystallins are a homogeneous group of highl y symmetrical, monomeric proteins typically lacking connecting peptides and terminal extensions. They are differentially regulated after early development. Four gamma-crystallin genes (gamma-A through gamma-D) and three pseudogenes (gamma-E, gamma-F, gamma-G) are tandemly orga nized in a genomic segment as a gene cluster. Whether due to aging or mutations in specific gen es, gamma-crystallins have been involved in cataract formation. [provided by RefSeq

Other Designations

gamma crystallin 4